
Concept and
reference architecture
on Aries AIP 2.0

 Self-
Sovereign
Identity in
the Analog
World

Whitepaper

Self-Sovereign
Identity in the
Analog World

02

➀ Introduction
 → Page 04

➁ Starting Point
 Customary use of SSI for online authentication

 Shortcomings of physical IDs

 → Page 06

➂ Target Solution
 Definition of a generic use case

 Technical deconstruction of our use case

 Setting up a private and secure communication
between SSI users

 Which wallet type to choose

 Creation of a mobile (edge) wallet
 –  Platform
 –  Aries
 –  Components of an Android software

  architecture with an Aries framework
 –  Additional Infrastructure needed

  for the mobile application

 Privacy issues and future governance issues
 –  Mediators and resolvers
 –  The trust anchor problem

 → Page 10

→ Conclusion → Author → Glossary → References

Content

Introduction
Self-sovereign identity (SSI), a new generation
of digital identity, is on the rise and experiencing
global hype. It lets users regain privacy and
control over their personal data by giving them
the possibility to create and digitally store their
identity on their smartphones and use it in lieu of
its physical counterpart without relying on any
centralized authority.

➀

04

Governments and private companies look
to it as a technology for the long overdue
digitization of analog documents such as
ID cards, passports, driver’s licenses, etc.
The digitization of official identities and of
verification processes is one of the final
steps on the road to greater automation
and process simplification. Applications
to government agencies will be possible
without the hassle of visiting a counter in-
person, and services requiring verification
of residency or identity will be simplified
and processed without multi-day delays.

Not for the online world only
Current SSI solutions focus on the online
experience and on ways to integrate SSI
into multiple online services through alrea-
dy available versions of mobile wallets. The
attempt to seamlessly fit new digital iden-
tity representations into daily life, however,
is still fraught with serious shortcomings in
terms of convenience and ease of use.

Going one step further
Having successfully demonstrated the ap-
plicability and integration of SSI as a novel
solution for online identity management
in our SSI initiative [1], we decided to go a
step further and analyze how the advan-
tages of the SSI ecosystem of trust can be
extended and transferred to the physical
world.

This white paper explores a way to increase
security, convenience, and interoperabili-
ty in the use of mobile wallets for physical
identity interactions with people or ma-
chines in close proximity through the next
generation of Aries RFCs (AIP 2.0).

We moreover propose a reference software
architecture optimized for SSI capability in
mobile applications and test it in a mobile
wallet implementation for Android.

05Introduction

Customary use of SSI
for online authentication
SSI lets users take control over their iden-
tity and enables a variety of use cases for
trusted online interactions with others and
for the mutual validation of identity. The
first and most common of these use cases
is to authenticate yourself by using your
SSI wallet to scan a QR code proposed by
the online service you want to access.

The QR code contains meta information
such as public cryptographic keys to
 secure the connection and can be conside-
red a secure invitation link. The user must
first accept the web service's connection
and then consent to sharing the requested
information (see Figure 1).

Starting Point

➁

06

Verifier

Login

➀ Show QR code on a web page

Accept connection invitation ➂

Share asked information and proof from VCs ➄

Scan QR code ➁

➅ Validate VCs

Holder

➃ Ask for specific user information

Figure 1
Schematic representation of the
SSI online authentication process

1. The verifier displays a QR code on a web page.
2. The holder opens their wallet to scan the QR code.
3. The holder accepts the invitation to connect.
4. The verifier requests specific user information and credentials from the holder.
5. The holder provides the verifier with the requested information and proof
in the form of verifiable credentials (VCs).

6. The verifier validates the user information and proceeds with the associated
 processes.

The protocol described above is suitable for online authentication, but is too cumbersome
for the deployment of SSI in the analog world where we need more convenient solutions
to encourage widespread use.

07Starting Point

Shortcomings of physical IDs

Current physical identification processes
are difficult to digitize and to automatize.
A person shows their physical ID card to
the verifier, who checks it but cannot be
certain of its authenticity. Moreover, if the
verifier then needs to manually copy the
relevant information for digital verification
processes, there are bound to be data
 quality issues.

Take, for example, a police agent who, ha-
ving requested a driver's license and other
physical documents, needs to verify their
authenticity by typing the ID number of the
driver into an online application in order
to obtain the required information from a
central service.

With a digital driver’s license as verifiable
credential the same case in point could
be handled with significantly less data
exposure for the driver (who would need
to reveal only the relevant information
for the situation at hand). The police offi-
cer, on the other hand, would get tamper
proof evidence of the driver’s identity and
driving capacity and could, if necessary,
automatically forward this information,
e.g., to obtain the complete registration
status of the vehicle and the current dri-
ver’s license rating.

08 Starting Point

09

Definition of a generic
use case
Cases like the police control described
above can be aggregated into a generic
use case that can serve as a basis for a
wider adoption of SSI in everyday situa-
tions in the analog world. The goal is to
provide a convenient way of proving user
identity to other entities using QR codes
or NFC readers:

A verifier, be it a machine or a physical
person, should be able to ask for and
receive proof of credentials via an easily
integrable medium such as a QR code
(see Figure 2).

Target Solution

➂

10

➀ Ask to see QR code

➂ Scan QR Code

Open wallet to show QR code ➁

Send selected VC ➃

➅
Continue automation

➄ Verify VC

Mobile
Wallet Holder

Mobile
Scanner Verifier

Automated Workflow

Figure 2
Verifier asking a holder for proof of identity

1. The verifier asks to see QR code.
2. The holder opens the wallet and selects specific credentials to present proof.
3. The verifier scans the QR code with a mobile scanner.
4. Secure transaction of credentials.
5. The verifier validates the identity.

Target Solution 11

Technical deconstruction
of our use case
Let us have a look at the technical prere-
quisites of the generic use case presented
above. Each user is equipped with a client
device allowing them to establish their
identity. We assume the following about
the client device:

Just like the physical wallet, a person usu-
ally has this device handy and can access
its content whenever needed. To create
this kind of accessibility and encourage
the widespread adoption of digital identi-
ties in everyday life, we assume that cus-
tomer devices are mobile phones with an
integrated camera. Other devices such as
laptops could also be used, but are less
practical in terms of size and would poten-
tially require an additional optical scanner
for the verification process.

In contrast to online verification, where the
verifier initiates the digital process, here
the identity holder does so by presenting
a VC in the form of a QR code or similar on
their smartphone for the verifier to scan.
This approach is chosen because it mimics
the way an official document is normally
presented to an authority and thus repli-
cates the so-called «mental model» of the
user [2]. The verifier checks the validity
and integrity of the information so provi-
ded (see Figure 3).

12 Target Solution

Verifier

Holder

Figure 3
Verifier asking a holder for proof of identity

13Target Solution

Setting up a private and
secure communication
between SSI users
In order to exchange personally identifia-
ble information (PII), a secure and privacy
compliant communication between the
verifier and the holder must be set up. Such
communication can be achieved by using
the DIDComm standard [3] which is secure
by default and provides a base layer for the
protocols needed to exchange verifiable
credentials (VC). The DIDComm standard
defines how to establish a private and
secure connection based on decentralized
identifiers (DIDs) and DID Documents [4].
A popular protocol collection for SSI is the
Aries project [5]. It defines and proposes
implementations to issue and present VC
proofs as well as several other protocols.

Verifier and holder need a DIDComm com-
munication to use the Aries Protocol. Due
to this constraint, the QR code displayed
by the holder must be able to establish a
DIDComm communication. In practice, the
holder will generate an invitation to connect
and present it to the verifier in the form of
a QR code (Figure 4). The verifier scans the
QR code and can then launch the DIDComm
connection. Once the connection is esta-
blished, the holder must notify the verifier
that they wish to present a proof.

14 Target Solution

The Aries RFC presentation protocol provi-
des some flexibility by allowing the holder
to send an optional message to the verifier
to start the protocol.

To ensure interoperability with other mobile
wallets, the holder’s mobile wallet automa-
tically starts the proof presentation process
as soon as the DIDComm connection to the
verifier is set up. The alternative, where the
verifier initiates the proof presentation, is
still possible, as each verifier application
can simply ignore the holder’s presentation
request and send its own request.

As described above, it is thus theoretically
possible to achieve the outlined use case
by generating a connection invitation from
the mobile wallet and sending an optional
«present proof protocol» message to start
the process. In the following chapters, a
reference architecture for implementing
the described protocol is presented.

Propose a presentation of credentials ➀
(otional message)

(otional message)

➁ Request the presentation of credentials

Negotiate a change to the presentation of credentials ➂
Alice
Holder

Bob
Verifier

Present the presentation of credentials ➃

alt

alt

Create or reuse
a secure connection

loop

Figure 4
Proof presentation

15Target Solution

Which wallet type to choose

An initial decision affecting the concept
is whether the mobile wallet should be a
local mobile wallet (or edge wallet), where
all user data is stored on the user’s smart-
phone, or a cloud wallet, where the appli-
cation sends commands to a wallet in the
cloud.

Edge wallets are mobile applications con-
taining an SSI agent. They include most
SSI functionalities, which means that users
manage their own digital identity and are
truly self-sovereign.

In peer-to-peer communication, however,
there is a major problem as access to the
IP network is restricted for client devi-
ces. To communicate with another client,
a publicly accessible mediator must relay
the incoming messages to the target client
device (see Figure 5).

Another concern is the backup and reco-
very of digital identities. This should be
convenient and easy for users. A practical
approach for the secure encryption of data
and the backup and recovery process can
be found in the referenced thesis [6]. The
concept is inspired by blockchain imple-
mentations for the secure generation of
cryptographic keys. These keys are stored
in the hardware security module of the
smartphone and can only be accessed with
a registered biometric credential. Wallet
backups are encrypted and uploaded to
the cloud and automatically retrieved when
the user installs the mobile wallet on a new
device.

Cloud wallets, on the other hand, defeat
the purpose of a user-centric wallet where
the holder has full control as all user data
is stored on a central platform. Edge wal-
lets may need a mediator to communicate
with each other, but cloud wallets require
additional security measures between the
mobile app and the wallet.

Considering the two options, we prefer the
edge wallet for the following reasons:
1. greater flexibility due to the built-in
implementation of the SSI protocol.

2. more privacy and data protection, as
the user identity is stored on the device
itself.

3. better security, since the hardware
security module of the client device
can be used. We consider the mediator
problem to be minor, as the SSI
edge agent can be easily set up and
maintained by a trusted partner.

Furthermore, with edge wallets, offline
scenarios via direct connections via Blue-
tooth or other future transport modes
are technically feasible, although not yet
standardized and implemented. This is
 another clear advantage compared to
cloud wallets [6].

In summary, for the physical identity use
case, edge wallets give users more cont-
rol over their digital identity and allow for
more useful features.

16 Target Solution

Figure 5
Edge wallets necessitate a mediator
to communicate

SSI Agent SSI Agent SSI Agent

Edge Wallet Mediator

Accessible from Internet

Edge Wallet

17Target Solution

Creation of a mobile
(edge) wallet
Platform
To test the hypothesis of a physically en-
hanced SSI in an edge wallet, we decided
to create a native Android prototype. The
reason for this choice is the easier access
to native components (e.g., Secure Enclave
and HSM), better encapsulated datastore
management and better support for back-
ground tasks than when using cross-mobile
solutions such as React Native or Flutter.

Opting for native development comes with
additional time costs, as two separate mo-
bile wallet applications need to be deve-
loped. Nevertheless, native apps have the
advantage of being more responsive, more
secure and offering a better look and feel.

Aries
One of the goals is to use Aries AIP 2.0 [7]
for this implementation. The only compatible
Aries framework that can be embedded in a
mobile application is Aries Framework Go.

Thanks to the possibility of compiling the
Aries Framework Go to a C callable library
(native library binary that can be called
from higher level programming languages)
with Java or objective-C wrappers [8], it
is possible to embed it in Android and iOS
applications, and with extensions also in
cross-mobile solutions. For Android, the
Aries Framework Go can be integrated as
an Android archive (aar) like other Android
libraries.

Components of an Android software
 architecture with an Aries framework
The optimal architectural choice is best
described by Figure 6. The application
uses an activity to manage global user
interface (UI) elements, such as the top
toolbar or the bottom navigation bar. The
activity must also initialize critical compo-
nents like the navigation components.

Navigating between views is managed by
the navigation components [9]. At each
view transition, the previous fragment is
destroyed, and the next fragment is loade d.

Each fragment that contains data has a
ViewModel companion. The ViewModel
itself contains all the data in the view
and acts as an intermediary between the
 fragment and the other components. The
abstraction avoids business and data
dependencies in the fragments making
up the user interface. It also allows for
 extended interaction with services and
 coroutines [10].

In general, fragments and ViewModels do
not fetch data but get it reactively via data
streams.

18 Target Solution

There are several possible patterns in
 Kotlin, three of which are used in this
 architecture:
 – LiveData are usually located between
fragments and ViewModels. They
contain data and can be observed by
the fragments for changes. They are
also lifecycle aware, meaning that if a
fragment is destroyed, the observer
is automatically removed to avoid
leaks [11].
 – Flows are data streams that typically
occur between services, repositories,
and ViewModels. They support
asynchronous data transformations
and are only executed when collected.
They support basic operations that can
be useful, such as flow concatenation,
where multiple data sources with the
same object type can be merged. The
resulting data stream is updated each
time one of the data sources sends
new values [12].
 – SharedFlows are similar to flows with
one major difference [13]: SharedFlows
are executed even if they are not
collected by anyone. In practice, this
means that a component starting to
listen to a SharedFlow will not receive old
data transmitted before it was listening.

The Aries Service (which interacts with
Aries Framework Go) uses the SharedFlow
internally as an Event Bus [14] to distribu-
te Aries events to all components of the
application. This architecture choice allows
asynchronous operations globally over the
activity, limited to the current view with
the ViewModel, or completely in the back-
ground like the History Service, which
stores the events occurred without user
interaction.

The application also includes global de-
pendency injection with Hilt. Hilt is recom-
mended by the Android documentation to
increase the testability and scalability of
Android applications [15].

19Target Solution

Figure 6
Overview of the Android architecture

The proposed reference architecture allows for a loosely coupled integration with an
Aries framework and uses asynchronous execution to improve the responsiveness,
maintainability, and extensibility of the application.

20 Target Solution

Additional infrastructure needed
for the mobile application
As mentioned earlier, mobile edge wallets
cannot act completely independently due
to the nature of their host devices. To re-
ceive messages, they must coordinate with
a publicly available mediator.

In addition to the mediator, there is another
service, the DID Resolver. It is not essential
for the moment, but will play a bigger role
in terms of interoperability in the future,
as it will not be possible to integrate every
ledger technology into the mobile wallet.

The Decentralized Identity Foundation (DIF)
provides an open-source solution that can
implement a variety of DID methods on a
configuration-by-configuration basis. Aries
Framework Go supports requests to the
DID Resolver and by extension allows the
Android prototype wallet to support multi-
ple ledger technologies.

Mediator Universal
Resolver

Le
dg
er
 B

Le
dg
er
 A

Le
dg
er
 C

Figure 7
Infrastructure dependencies
for mobile edge wallets

21Target Solution

Privacy issues and future
governance issues
Self-sovereign identity is apt to solve a
number of privacy issues and provide users
with a convenient and secure way to store
and prove their digital identities – online
and in the analog world. However, the as-
sociated systems are not (yet) perfect and
may raise privacy concerns.

Mediators and resolvers
In the case of an edge wallet, these con-
cerns mainly relate to the use of mediators
and resolvers. Both services receive re-
quests from participating wallets and could
infer information about the user from the
data they collect.

A fixed mediator, for example, knows all
the user’s DIDComm connections and can
identify who they are talking to if the DIDs
of the involved parties are public, which is
the case with issuers. Even if the mediator
only gets to see encrypted data, it may still
be able to correlate the frequency and size
of the encrypted messages to guess which
protocols are being used and how often
the communication is taking place.

The same holds true for DID resolvers.
Their use is convenient because the wallet
does not need to implement a separate re-
solver for each DID method. The disadvan-
tage, however, is that these services know
the holder’s IP address and can correlate
it to the public DID they are supposed to
resolve.

22 Target Solution

The trust anchor problem
Standards and implementations in the SSI
context are evolving rapidly and may soon
produce practical solutions for this kind of
problem. There remains, however, an other
major issue to be resolved: Layer four
of the SSI concept is governance, which
enables trust between systems and users
and forms the backbone of interoperability.
Trust can be represented, for example, by
authorities endorsing trustworthy sources.
Such entities are called certificate autho-
rities (CA) or trust anchors. Trust anchors
are essential to ensure that the identity of
a person or thing is legitimate. Most people
are familiar with trust anchors through the
root CA certificates of operating systems
and browsers, which ensure that a website
is secure and authentic [16].

In the SSI ecosystem, the most important
identities are the public DIDs of issuers.
An issuer provides information about an
entity in the form of VCs. Any verifier must
request the resolution of the issuer’s DID to
obtain the public key required to verify that
the VC’s proof is valid. But while the verifier
can verify that the VC is technically valid,
he has no way of knowing whether the in-
formation provided by the issuer in the VC
is correct.

To solve this trust problem, a verifier needs
to be sure of the issuer’s own trustworthi-
ness. This can be achieved through white-
lists created by an authority certifying the
identity of companies, such as the Global
Legal Entity Identifier Foundation (GLEIF)
[17], through a VC issued by a CA certi-
fying the issuer’s credibility, or a linked
 domain challenge where the issuer must
have control over a domain name, etc.

There is also a potential trust issue bet-
ween the VC holder and the verifier. Hol-
ders could be tricked by fake verifiers into
revealing personal information (phishing).
The solution to this problem will have to be
similar to the solutions presented above
for issuers, taking into account that other
holders can also verify VCs.

Summarizing, we can state the following:
While solutions as the one we present
in this paper are undoubtedly a big step
forward in the digitization of physical iden-
tification, an optimal solution for the gover-
nance of trust has yet to be found.

23Target Solution

In this paper, we explore a way to digitally
enhance the physical verification process.
This is done by developing a novel SSI
approach to physical world interactions
optimized for mobile wallets with the help
of an experimental next generation version
of AIP. A native mobile wallet prototype
 application for Android, built according to
our proposed software architecture and
using Aries AIP 2.0, serves as a proof of
concept and showcase for this approach.

We thus provide a blueprint for a smoother
SSI experience in the analog world. While
some potential privacy downsides clearly
remain to be addressed, SSI offers com-
pelling advantages over the current state
of affairs in the analog world which is still
relying on physical forms of identification,
such as driver’s licenses and passports.
By offering a reference design compatible
with easy-to-use, real-world SSI, we hope
to help precipitate a future where every-
one can verify their identity and selectively
share their information with optimal privacy,
security and autonomy.

Conclusion

➃

Author

Michel Sahli
Security Consultant
michel.sahli@adnovum.ch

24

25

Glossary

➄

26

AIP Aries Interop Profiles are community agreed standards.

Aries RFCs Aries RFCs – Requests For Comments – are topics, features and
concepts for standardizing the Aries ecosystem.

CA Certificate Authority

DID Decentralized Identifier: a type of identifier enabling a verifiable,
decentralized digital identity.

DID Resolver Service that resolves multiple DID methods like SOV, ION, etc.

DIDComm Secure and private communication channel between two devices
built on the DID standard.

DIF The Decentralized Identity Foundation is an engineering-driven
organization focused on developing the foundational elements
necessary to establish an open ecosystem for decentralized
identity and ensure interoperability between all participants.

GLEIF The Global Legal Entity Identifier Foundation is an international
organization listing every company in the world by means of a
unique identifier.

(Hyperledger)
Aries

Hyperledger Aries provides a shared, reusable, interoperable tool
kit designed for initiatives and solutions focused on creating,
transmitting and storing verifiable digital credentials.

NFC reader Operating in a frequency range centered on 13.56 MHz, Near
Field Communication (NFC) readers enable contactless, short-
range communication between compatible devices at close
proximity.

QR code A quick response code is a type of two-dimensional (2D) bar
code used to provide easy access to online information through
the digital camera on a smartphone or tablet.

VC A VC or Verifiable Credential is an open standard for digital
credentials.

27Glossary

References

➅

28

1. Exploring the potential of Self-Sovereign Identity with representative use case,
Adnovum Blog, January 12, 2022: https://www.adnovum.com/blog/exploring-the-
potential-of-self-sovereign-identity-with-representative-use-cases

2. Mental Models, Nielsen Norman Group: https://www.nngroup.com/articles/mental-
models/

3. DIDComm Messaging: https://identity.foundation/didcomm-messaging/spec/
4. Decentralized Identifiers (DIDs) v1.0, W3: https://www.w3.org/TR/did-core/
5. Hyperledger Aries Specification: https://github.com/hyperledger/aries
6. Application of Self-Sovereign Identity in the Physical World, Master Thesis, Michel
Sahli: https://heig-vd.ch/docs/default-source/docs-groupe-ysecurity/sahli_mse_tm_
sa21.pdf

7. Aries Interop Profile Version: 2.0: https://github.com/hyperledger/aries-rfcs/tree/
main/concepts/0302-aries-interop-profile#aries-interop-profile-version-20

8. Aries Agent Mobile: https://github.com/hyperledger/aries-framework-go/blob/main/
cmd/aries-agent-mobile/README.md

9. Navigation, Android Developers Guide: https://developer.android.com/guide/
navigation

10. Kotlin coroutines on Android, Android Developers Guide: https://developer.android.
com/kotlin/coroutines

11. LiveData, Android Developers Guide: https://developer.android.com/reference/kotlin/
androidx/lifecycle/LiveData

12. Kotlin Flows, Android Developers Guide: https://developer.android.com/kotlin/flow
13. StateFlow and SharedFlow, Android Developers Guide: https://developer.android.
com/kotlin/flow/stateflow-and-sharedflow

14. How To Implement The Event Bus Pattern With Kotlin SharedFlow In Your Android
App. Medium: https://medium.com/tech-takeaways/how-to-implement-the-event-
bus-pattern-with-kotlin-sharedflow-in-your-android-app-768529828607

15. Hilt and Dagger, Android Developers Guide: https://developer.android.com/training/
dependency-injection/hilt-android#hilt-and-dagger

16. What Is a Certificate Authority (CA): https://www.ssl.com/faqs/what-is-a-chain-of-
trust/

17. GLEIF – Global Legal Entity Identifier Foundation: https://www.gleif.org/en/

29References

https://www.adnovum.com/blog/exploring-the-potential-of-self-sovereign-identity-with-representative-
https://www.adnovum.com/blog/exploring-the-potential-of-self-sovereign-identity-with-representative-

And your
digital
business
works
adnovum.com

30 Adnovum eBook / Your guide to cybersecurity risk assessment

31Your guide to cybersecurity risk assessment / Adnovum eBook

At our headquarters in Zurich
and our other offices in Europe
and Asia we employ about 600
IT specialists.

Adnovum Informatik AG
Badenerstrasse 170
8004 Zurich

Phone +41 44 272 61 11
info@adnovum.ch

